International Journal for Rapid Research in Engineering Technology & Applied Science

Vol.4 Issue 3 March 2018
ISSN (Online): 2455-4723

Implementation of Big-Data Application Using the
MapReduce Framework

Niesh Jaiswal, Prof. Mayank Bhatt
M.Tech Scholar, Assistant Prof. & HOD
Department of Computer Science & Engineering, LNCT Indore, India
nilesh.jaiswall24 @ gmail.com*, maynkbhatt27 @ gmail.com™**

ABSTRACT:

In cloud computing, data is moved to a
remotely located cloud server. Cloud server
faithfully stores the data and return back to
the owner whenever needed. Data and
computation integrity and security are
major concerns for wusers of cloud
computing facilities. Today's clouds
typically place centralized, universal trust in
all the cloud's nodes.Hadoop is founded on
MapReduce, which is among the most
popular programming items for huge
knowledge analysis in a parallel computing
environment. In this paper, we reward a
particular efficiency analysis,
characterization, and evaluation of Hadoop
MapReduce WordCount utility.

Keywords: Performance analysis, cloud
computing, Hadoop WordCount.

I. INTRODUCTION

Yesteryear decade features seen your rise
regarding cloud calculating [1], an
arrangement where businesses in addition to
individual wusers utilize hardware, storage
space, and software program of 3rd party
companies named cloud providers rather than
running their very own computing commercial
infrastructure. Cloud calculating offers
customers the illusion of needing infinite
calculating resources, of which they can use all
the or less than they have to have, without
being forced to concern themselves with
exactly how those resources are offered or
maintained [2].

The derivation of big knowledge is indistinct
and there are a lot of definitions on huge data.
For examples, Matt Aslett outlined massive
knowledge as “tremendous data is now

Paper ID: 2018/IJRRETAS/3/2018/37621

virtually universally understood to refer to the
recognition of larger business intelligence
through storing, processing, and examining
data that was previously ignored because of
problem of normal data management applied
sciences” [5]. Recently, the term of giant data
has got a brilliant momentum from
governments, industry and research
communities. In [6], significant information is
outlined as a term that encompasses using
tactics to capture, approach, analyze and
visualize potentially significant datasets in a
cheap timeframe now not obtainable to usual
IT applied sciences. The figure below would
throw more light to your understanding.

Node 1 Node 2 Node 3

e [TTITT) (AL

‘ Mapping process | ‘ Mapping process ‘
7 r

Intermediate data mE

mesce | 1TY) || LI

Values exchanged
by shuffle process

Node 1 Node 2 Node 3

s | (L) 1 CRELLLL | L

‘ Reducing pracess ‘ Reducing process Reducing process ‘

wor | p | mm |

Figure 1. Flow of Map Reduce

I1. Map Reduce Problem

International Journal for Rapid Research in Engineering Technology & Applied Science

Word count is typical examples where Hadoop
map reduce developers start their hands on.
This sample map reduce is intended to count
the no of occurrences of each word in the
provided input files. Below line show about
Map Reduce Problem.

¢ Map()
o Process a key/value pair to
generate intermediate
key/value pairs
e Reduce()
o Merge all intermediate values

associated with the same key

Users implement interface of two primary
methods:
Map: (keyl, vall) — (key2, val2)

e Reduce: (key2, [val2]) — [val3]

e Map - clause group-by (for Key) of an
aggregate function of SQL

e Reduce - aggregate function (e.g.,
average) that is computed over all the
rows with the same group-by attribute
(key).
The point to be noted here is that first
the mapper class executes completely
on the entire data set splitting the
words and forming the initial key
value pairs. Only after this entire
process is completed the reducer starts.
Say if we have a total of 10 lines in our
input files combined together, first the
10 lines are tokenized and key value
pairs are formed in parallel, only after
this the aggregation/ reducer would
start its operation.

III WORD COUNT PROBLEM WITH
MAP REDUCES.

The overall MapReduce word count process

Input Spliing Wapping Shuffing Reducing Fial e
] Bear, | — Bear2
Deer, ! ———» Bear 1 —
Deer Bear River ——» Bear 1 | P
r Fiver, 1 | —
Ve TN sl e
— T BN
Dest Bear Rier (o] %: Cal L
CarCarRiver ——» CarCarfoer — Carf | o/ "/ —
Deer Car Bear R, 1+ | e
. R Y Yoem] —» e
— -:_ o De ! —_—
\ Deard | X
Shetaba > Wl 7 N e
Bl ;A —
— Rt 1 —

Paper ID: 2018/IJRRETAS/3/2018/37621

Vol.4 Issue 3 March 2018
ISSN (Online): 2455-4723

The word count operation takes place in two
stages a mapper phase and a reducer phase. In
mapper phase first the test is tokenized into
words then we form a key value pair with these
words where the key being the word itself and
value ‘1°. For example consider the
sentence “tringtring the phone rings”

In map phase the sentence would be split as
words and form the initial key value pair as
<tring,1>

<tring,1>

<the,1>

<phone, 1>

<rings,1>

In the reduce phase the keys are grouped
together and the values for similar keys are
added. So here there are only one pair of
similar keys ‘tring’ the values for these keys
would be added so the out put key value pairs
would be

<tring,2>

<the,1>

<phone, 1>

<rings,1>

This would give the number of occurrence of
each word in the input. Thus reduce forms an
aggregation phase for keys.

Algorithm for Word Count using Map-
Reduce
Mapper<LongWritable, Text, Text,IntWritable>
{

private static final IntWritable one = new
IntWritable(1);

private Text word = new Text();

public static void map(LongWritable key, Text
value, OutputCollector<Text,IntWritable>
output, Reporter reporter) throws IOException
{

String line = value.toString();
StringTokenizer = new StringTokenizer(line);
while(tokenizer.hasNext()) {
word.set(tokenizer.nextToken());
output.collect(word,one);

}

}

}
VI. RESULT ANALYSIS

Existing and proposed system implemented on
Ubuntu 14.10 Server edition. First install and
configure jdk1.8 on machine. After that install
Hadoop 2.7 and configure it. NetBeans 8.0
used as editor and creates Graphical User

International Journal for Rapid Research in Engineering Technology & Applied Science

Vol.4 Issue 3 March 2018
ISSN (Online): 2455-4723

Interface for project. Compare existing and
proposed on the basis of computation time.
Below figures show GUI and comparison
between both systems.

Load Dataset

Ihome/sniDacuments/TestData Resat | 1

Existing Mtha | Proposed Method | Result
Caculata |

private javax swing JFlleChaoser FlleChaoserl
on - do niot modify

JButton [Buttonl:
swing JButtan (Button2:

private javax.
private javax
prv

Load Dataset

[home/sn/Documents/TestData L Reset |]

hod [Propesed Methed | Result |

-

e jTabbedPanel

bbedPane TabbedPaneZ
Area [TestAreal

[TextArea [TewtAreaz:

public static [avax swing,
1/ End of varisbles declaration

Load Dataset

[home/sn/Documents/TestData L Reset |]

[Existing Method | Propased Meathod | Result

Time Camputation | Memory |

Shaow Graph

Time

gg

Propased

Figure 4. Computation time chart for existing & proposed

V. CONCLUSION

Map-Reduce, proposed in this paper provides
an online, on-demand and closed-loop solution
to managing these faults. The control loop in
word count mitigates performance penalties
through early detection of anomalous
conditions on slave nodes. Anomaly detection
is performed through a novel sparse-coding
based method that achieves high true positive
and true negative rates and can be trained
using only normal class (or anomaly-free) data.
The local, decentralized nature of the sparse-
coding models ensures minimal computational
overhead and enables usage in both
homogeneous and heterogeneous Map-Reduce
environments.

VI. REFERENCES

[1] Samneet Singh and Yan Liu,“A Cloud
Service Architecture for Analyzing Big
Monitoring Data”, ISSNI111007-
02141105/101lpp55-70 Volume 21, Number 1,
February 2016

[2] JOSEPH A. ISSA, “Performance
Evaluation and Estimation Model Using
Regression Method for Hadoop WordCount”,
Received November 19, 2015, accepted
December 12, 2015, date of publication
December 18, 2015, date of current version
December 29, 2015.

[3] Yaxiong Zhao, Jie Wu, and Cong Liu,
“Dache: A Data Aware Caching for Big-Data
Applications Using the MapReduce
Framework”,ISSN11100702141105/1011pp39-50
Volume 19, Number 1, February 2014

[4] Zhuoyao Zhang LudmilaCherkasova,
“Benchmarking Approach for Designing a
MapReduce Performance Model”, ICPE’13,
April 21-24, 2013

[5] NikzadBabaiiRizvandi, Albert Y. Zomaya ,
Ali JavadzadehBoloori, Javid Taheril, “On
Modeling Dependency between MapReduce

Configuration Parameters and Total Execution
Time”, 2012

[6]Nikzad Babaii Rizvandi, Javid Taheril,
Reza Moraveji, Albert Y. Zomaya, “On
Modelling and Prediction of Total CPU Usage
for Applications in Map Reduce

Paper ID: 2018/IJRRETAS/3/2018/37621

International Journal for Rapid Research in Engineering Technology & Applied Science

Enviornments”, 2011

[7]1 A. Baratloo, M. Karaul, Z. Kedem, and
P.Wyckoff, “*Charlotte: Meta computing on
theWeb," in Proc. 9th Int. Conf. Parallel
Distrib. Comput. Syst., 1996, pp. 1_13.

[8] J. Bent, D. Thain, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and M. Livny,
“Explicit control in the batch-aware
distributed _le system," in Proc. Ist USENIX
Symp. Netw. Syst. Design Implement. (NSDI),
Mar. 2004, pp. 365_378.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A.
Brewer, and P. Gauthier, "Cluster-based
scalable network services," in Proc. 16th
ACMSymp. Oper. Syst. Principles, Saint-
Malo, France, 1997, pp. 78_91.

Paper ID: 2018/IJRRETAS/3/2018/37621

Vol.4 Issue 3 March 2018
ISSN (Online): 2455-4723

[10] S. Ghemawat, H. Gobioff, and S.-T.
Leung, “"The Google _le system," in Proc. 19th
Symp. Oper. Syst. Principles, New York, NY,
USA, 2003, pp. 29_43.

[11] S. Ibrahim, H. Jin, L. Lu, L. Qi, S.Wu,
and X. Shi, ““Evaluating MapReduce on virtual
machines: The Hadoop case,” in Proc. Int.
Conf. Cloud Comput., vol. 5931. 2009, pp.
519_528.

[12] J. Issa and S. Figueira, Graphics
performance analysis using Amdahl's law:
IEEE/SCS SPECTS," in Proc. Int. Symp.
Perform. Eval. Comput. Telecommun. Syst.,
Ottawa, ON, Canada, 2010, pp. 127_232.

http://www.tcpdf.org

