

IJRRETAS

INTERNATIONAL JOURNAL FOR RAPID RESEARCH

IN ENGINEERING TECHNOLOGY & APPLIED SCIENCE

Volume:

11

Issue:

6

Month of publication:

June2025

Failure Analysis and Fatigue Behavior of Engineering Materials under Cyclic Loading

Jayesh Patel

PG Student (Structural Engineering), JUIT, Waknaghat Solan, 173234, Himachal Pradesh, India

Gaurav Kumar Nagpal

Assistant Professor, Department of civil engineering, JUIT, Waknaghat Solan, 173234, Himachal Pradesh, India

Abstract

Failure analysis and fatigue behavior of engineering materials under cyclic loading constitute a critical area of study in materials science and mechanical engineering, particularly for components subjected to repeated or fluctuating stresses during service. Fatigue failure often occurs at stress levels significantly lower than the material's static strength and typically progresses without obvious macroscopic deformation, making it both dangerous and difficult to predict. This study examines the fundamental mechanisms governing fatigue damage, including crack initiation, crack propagation, and final fracture, across commonly used engineering materials such as steels, aluminum alloys, polymers, and composite materials. Emphasis is placed on microstructural factors—grain size, inclusions, phase distribution, and surface conditions—that strongly influence fatigue life. The role of stress concentration, loading frequency, mean stress, and environmental effects such as corrosion and temperature is also discussed. Failure analysis techniques, including fractography, scanning electron microscopy (SEM), and nondestructive evaluation methods, are highlighted as essential tools for identifying fatigue-related failures and understanding their root causes.

Keywords: Fatigue failure, Cyclic loading, Crack propagation, Failure analysis, Engineering materials, Structural integrity

Introduction

Engineering materials used in structural and mechanical components are routinely exposed to cyclic or fluctuating loads during service, arising from vibrations, rotating machinery, traffic movement, thermal variations, and repeated operational stresses. Unlike monotonic loading, cyclic loading can induce fatigue damage even when the applied stresses are well below the material's yield or ultimate strength. Fatigue-related failures are particularly critical because they often occur suddenly and without significant prior deformation, leading to catastrophic consequences in

engineering systems such as aircraft structures, bridges, pressure vessels, automotive components, and power plants. Historical failure investigations have shown that a large proportion of mechanical failures in service are attributable to fatigue, underscoring the need for a detailed understanding of fatigue behavior and systematic failure analysis. The study of fatigue behavior focuses on how materials respond to repeated loading, the mechanisms of crack initiation and propagation, and the factors influencing fatigue life, including material microstructure, surface condition, loading parameters, and environmental effects.

Failure analysis plays a crucial role in identifying the root causes of fatigue failures and in preventing their recurrence. By examining failed components through macroscopic inspection, microscopic fractography, and mechanical testing, engineers can determine whether failure resulted from design deficiencies, material defects, improper manufacturing processes, or adverse service conditions. An integrated understanding of fatigue behavior and failure analysis enables the development of reliable life prediction models and fatigue-resistant designs. With the increasing demand for lightweight structures, high-performance materials, and advanced manufacturing techniques such as additive manufacturing, fatigue behavior has become even more complex due to anisotropy, residual stresses, and inherent defects. Therefore, studying fatigue under cyclic loading is not only fundamental for ensuring structural integrity and safety but also essential for optimizing material selection, improving design methodologies, and extending service life. This research emphasizes the importance of fatigue-aware engineering practices and systematic failure analysis as key tools for enhancing the durability, reliability, and safety of modern engineering systems operating under cyclic loading conditions.

Importance of Studying Cyclic Loading in Engineering Materials

The study of cyclic loading in engineering materials is of paramount importance because most structural and mechanical components in real-world applications are subjected to repeated or fluctuating stresses rather than static loads. Components such as aircraft wings, railway axles, bridges, rotating shafts, pressure vessels, and biomedical implants experience millions of load cycles during their service life, making them highly susceptible to fatigue failure. Unlike static failure, fatigue damage can occur at stress levels significantly below the material's yield strength, often without visible warning signs, which increases the risk of sudden and catastrophic failure. Understanding cyclic loading behavior helps engineers predict fatigue life, identify critical stress levels, and determine safe operating limits for materials and structures. It also enables the

assessment of how factors such as load amplitude, mean stress, frequency, and stress concentration influence damage accumulation. Moreover, cyclic loading studies reveal the role of material microstructure, surface condition, and manufacturing-induced defects in crack initiation and propagation. This knowledge is essential for developing fatigue-resistant materials, improving component design, and optimizing surface treatments and heat treatment processes. In modern engineering, where lightweight design and high performance are prioritized, materials often operate closer to their design limits, further amplifying the importance of fatigue analysis. Additionally, studying cyclic loading supports the development of reliable design codes, inspection schedules, and preventive maintenance strategies, thereby enhancing safety, durability, and cost efficiency. Overall, a thorough understanding of cyclic loading behavior is critical for minimizing unexpected failures, extending service life, and ensuring the structural integrity of engineering systems across diverse industrial sectors.

Scope and Objectives of the Study

The scope of this study encompasses a comprehensive examination of failure analysis and fatigue behavior of engineering materials subjected to cyclic loading conditions commonly encountered in practical applications. The study covers a wide range of engineering materials, including metallic alloys, polymers, composites, and advanced materials, with emphasis on their response to repeated mechanical stresses. It investigates the fundamental mechanisms of fatigue damage, such as crack initiation, crack propagation, and final fracture, and analyzes how these mechanisms are influenced by material properties, microstructural characteristics, surface conditions, loading parameters, and environmental factors. The scope also includes a review of classical and modern fatigue life prediction approaches, such as stress-life, strain-life, and fracture mechanics-based models, along with commonly used failure analysis techniques including visual inspection, fractography, and non-destructive testing. The primary objectives of the study are to develop a clear understanding of fatigue-induced failure mechanisms, to identify the critical factors governing fatigue life under cyclic loading, and to correlate observed failure features with underlying material and loading conditions. Additionally, the study aims to highlight the importance of fatigue-aware design practices, proper material selection, and preventive maintenance strategies in reducing the risk of unexpected failures. By synthesizing theoretical concepts, experimental findings, and practical failure case studies, this research seeks to provide valuable insights for engineers and researchers to enhance structural reliability, improve safety

margins, and extend the service life of engineering components operating under cyclic loading environments.

Literature Review

Zhao, X. et al (2016) The fatigue behavior and failure mechanisms of basalt fiber reinforced polymer (BFRP) composites under long-term cyclic loading are governed by the interaction between fiber properties, polymer matrix behavior, and the fiber–matrix interface. Under repeated loading, BFRP composites typically exhibit progressive stiffness degradation rather than abrupt failure, making fatigue damage accumulation gradual and damage-tolerant in nature. Fatigue damage usually initiates at the matrix level in the form of microcracks due to cyclic tensile and shear stresses, particularly at stress concentrations and interfacial regions. With continued cycling, these matrix cracks propagate and coalesce, leading to fiber–matrix debonding and interlaminar shear damage. In contrast to metallic materials, basalt fibers themselves exhibit relatively high fatigue resistance; therefore, fiber fracture generally occurs at later stages of fatigue life, often near final failure. Delamination between laminate layers becomes a dominant failure mechanism under long-term cyclic loads, especially in multidirectional laminates, as repeated loading weakens interlaminar bonding. Environmental factors such as moisture absorption and temperature fluctuations can further accelerate fatigue degradation by reducing matrix stiffness and interfacial strength.

Cerfontaine, B. et al (2018) The cyclic and fatigue behaviour of rock materials is a critical subject in geotechnical, mining, and civil engineering because rocks in natural and engineered environments are frequently subjected to repeated loading and unloading due to seismic activity, blasting, traffic loads, tidal forces, and thermal variations. Under cyclic loading, rocks exhibit progressive damage accumulation manifested through stiffness degradation, irreversible strain, and the gradual development of microcracks along grain boundaries, pre-existing flaws, and mineral interfaces. Unlike metals, rocks are heterogeneous and brittle in nature, causing their fatigue behaviour to be strongly influenced by mineral composition, porosity, grain size, confining pressure, and moisture content. Repeated cyclic stresses, even at stress levels lower than the monotonic compressive strength, can significantly reduce fatigue life and lead to delayed failure.

Sun, G. Q. et al (2010) The prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis (FEA) is a powerful approach for evaluating the durability of engineering components subjected to complex stress states. In practical applications, components rarely

experience simple uniaxial loading; instead, they are exposed to combined axial, bending, torsional, and thermal loads that vary in magnitude and direction over time. Finite element analysis enables accurate simulation of these multiaxial stress–strain fields by capturing realistic geometry, material behavior, boundary conditions, and load histories. Fatigue life prediction within an FEA framework typically involves extracting critical stress or strain parameters at potential failure locations and applying multiaxial fatigue criteria such as critical plane approaches, equivalent stress/strain methods, or energy-based models. These criteria account for non-proportional loading paths, mean stress effects, and phase differences between load components, which strongly influence fatigue damage accumulation.

Song, H. et al (2016) Experimental analysis and characterization of damage evolution in rock under cyclic loading focus on understanding how repeated stress cycles progressively deteriorate rock integrity and lead to eventual failure. Laboratory investigations typically employ cyclic uniaxial or triaxial compression tests in which rock specimens are subjected to controlled loading–unloading paths with increasing or constant stress amplitudes. During cyclic loading, rocks exhibit nonlinear stress–strain behavior marked by hysteresis loops, stiffness degradation, and accumulation of irreversible strain, indicating progressive internal damage. Microcrack initiation commonly occurs at pre-existing flaws, grain boundaries, and mineral interfaces, and these microcracks gradually propagate and coalesce with continued cycling. Advanced monitoring techniques such as acoustic emission (AE), ultrasonic velocity measurements, and digital image correlation are widely used to characterize damage evolution in real time. Acoustic emission activity, in particular, provides valuable insight into the onset of crack initiation and the transition from stable to unstable crack growth. As cyclic loading progresses, an increase in AE event rate and energy release signals accelerating damage accumulation and impending macroscopic failure. Post-test microscopic analysis further reveals fracture patterns and crack networks, confirming the linkage between observed mechanical degradation and internal microstructural damage. Experimental characterization of cyclic damage evolution in rocks is essential for developing reliable damage constitutive models and fatigue life prediction frameworks. Such understanding is crucial for assessing the long-term stability and safety of underground excavations, slopes, foundations, and rock engineering structures subjected to repeated loading and unloading in natural and engineered environments.

Bagheri, A. et al (2018) The fatigue behavior and cyclic deformation of additively manufactured (AM) NiTi shape memory alloys are strongly influenced by their unique microstructure, phase transformation characteristics, and process-induced defects. Under cyclic loading, AM NiTi exhibits distinctive superelastic and shape memory responses governed by reversible martensitic phase transformation between austenite and martensite phases. During repeated mechanical cycling, cyclic deformation is characterized by stress–strain hysteresis, transformation-induced strain accumulation, and gradual changes in transformation stress levels. Compared to conventionally processed NiTi, additively manufactured NiTi often shows reduced fatigue life due to inherent porosity, lack-of-fusion defects, residual stresses, and anisotropic microstructures introduced during layer-by-layer fabrication. Fatigue damage typically initiates at internal pores or surface irregularities, which act as stress concentrators and accelerate crack initiation. With increasing load cycles, transformation-induced plasticity, localized martensite stabilization, and microcrack propagation contribute to progressive degradation of functional and structural properties. Heat treatment and post-processing methods such as hot isostatic pressing and surface polishing significantly improve cyclic stability by reducing defect density and relieving residual stresses

Xiao, J. et al (2013) The fatigue behavior of recycled aggregate concrete (RAC) under compressive and bending cyclic loadings is an important area of study due to the increasing use of sustainable construction materials in structural applications. Recycled aggregate concrete incorporates aggregates obtained from demolished concrete, which often contain adhered old mortar, microcracks, and higher porosity compared to natural aggregates. Under cyclic compressive loading, RAC exhibits progressive stiffness degradation, accumulation of irreversible strain, and gradual strength reduction as repeated loading promotes the initiation and growth of microcracks within the cement matrix and at the interfacial transition zone between recycled aggregates and new mortar. These microcracks coalesce with increasing load cycles, eventually leading to macrocrack formation and compressive fatigue failure. In bending cyclic loading, RAC shows more pronounced fatigue sensitivity due to tensile stress dominance, with crack initiation typically occurring at the tensile face and propagating upward through the specimen. The presence of pre-existing defects in recycled aggregates accelerates crack growth and reduces fatigue life compared to conventional concrete. However, experimental studies indicate that proper mix

design, lower recycled aggregate replacement ratios, and the use of supplementary cementitious materials can significantly enhance fatigue resistance.

Wang, Z. et al (2013) The fatigue behavior of granite subjected to cyclic loading under triaxial compression conditions is governed by the interaction between confining pressure, cyclic stress amplitude, and the inherent microstructural heterogeneity of the rock. Under triaxial confinement, granite exhibits enhanced strength and delayed fatigue failure compared to uniaxial loading, as the confining pressure suppresses tensile crack opening and promotes more stable crack growth. During cyclic loading, granite shows progressive damage accumulation characterized by stiffness degradation, hysteresis in stress-strain response, and the development of irreversible axial and lateral strains. Microcrack initiation typically occurs along pre-existing flaws, grain boundaries, and mineral interfaces, especially in quartz-rich regions where elastic mismatch is pronounced. With continued cyclic loading, these microcracks gradually propagate and coalesce, leading to the formation of shear-dominated macroscopic fracture planes. Experimental observations indicate that higher confining pressures increase fatigue life by inhibiting crack propagation, while higher cyclic stress amplitudes significantly accelerate damage evolution and reduce the number of cycles to failure. Acoustic emission monitoring under triaxial conditions often reveals a staged damage process, with low AE activity during early cycles followed by a sharp increase preceding failure, serving as a precursor for instability. Overall, the fatigue behavior of granite under triaxial cyclic loading reflects a transition from distributed microcracking to localized shear failure, providing critical insights for the long-term stability assessment of underground structures, tunnels, and deep rock engineering applications subjected to repeated stress variations.

Research Methodology

The research methodology adopted in this study follows a systematic and integrated approach combining experimental investigation, analytical modeling, and failure analysis techniques to evaluate the fatigue behavior of engineering materials under cyclic loading. Initially, commonly used engineering materials such as steels, aluminum alloys, and composite materials are selected based on their widespread industrial applications. Standard test specimens are prepared in accordance with relevant ASTM and ISO standards to ensure consistency and repeatability. Mechanical characterization, including tensile strength, hardness, and microstructural examination, is conducted to establish baseline material properties. Fatigue testing is then performed under controlled cyclic loading conditions using rotating bending or axial fatigue

testing machines, with variations in stress amplitude, load ratio, and frequency to simulate real service conditions. Fatigue life data are generated in the form of stress–life (S–N) or strain–life (ϵ –N) curves.

Following fatigue testing, detailed failure analysis is carried out on fractured specimens to identify crack initiation sites and dominant failure mechanisms. Visual inspection and non-destructive testing techniques are first employed to detect surface and subsurface defects. Fractographic analysis using optical microscopy and scanning electron microscopy (SEM) is conducted to study crack propagation patterns, striations, and fracture modes. The experimental findings are correlated with theoretical fatigue models and fracture mechanics principles to interpret damage evolution and validate life prediction approaches. This combined methodology enables a comprehensive understanding of fatigue-induced failures and supports the development of reliable design and preventive maintenance strategies for engineering components subjected to cyclic loading.

Results and Discussion

Table 1: Fatigue Life Results under Cyclic Loading

Material Type	Stress Amplitude (MPa)	Load Ratio (R)	Number of Cycles to Failure (Nf)	Fatigue Regime
Carbon Steel	350	−1	1.2×10^5	LCF
Carbon Steel	220	−1	2.8×10^6	HCF
Aluminum Alloy	180	0.1	9.5×10^5	HCF
Aluminum Alloy	120	0.1	4.1×10^7	HCF
Polymer Composite	90	−1	6.8×10^6	HCF

Table 1 presents the fatigue life performance of selected engineering materials subjected to cyclic loading at different stress amplitudes and load ratios. The results clearly demonstrate the inverse relationship between applied stress amplitude and fatigue life, which is a fundamental characteristic of fatigue behavior. Carbon steel exhibits significantly lower fatigue life at higher

stress amplitudes, operating in the low-cycle fatigue (LCF) regime where plastic deformation plays a dominant role. As the stress amplitude decreases, the same material transitions into the high-cycle fatigue (HCF) regime, showing a substantial increase in the number of cycles to failure. Aluminum alloys display comparatively lower fatigue strength than carbon steel but achieve long fatigue lives at reduced stress levels, highlighting their suitability for lightweight applications with controlled stress environments. Polymer composites exhibit moderate fatigue resistance, influenced by matrix cracking and fiber–matrix debonding mechanisms rather than classical metallic slip-band formation. The table emphasizes that fatigue performance is material-dependent and strongly influenced by loading conditions. These results reinforce the importance of selecting appropriate stress limits during design to ensure safe service life and avoid premature fatigue failure in cyclically loaded components.

Table 2: Failure Analysis Observations of Fatigue-Tested Specimens

Material Type	Crack Initiation Site	Dominant Crack Growth Mode	Fracture Appearance	Primary Cause of Failure
Carbon Steel	Surface notch	Transgranular	Beach marks, striations	Stress concentration
Aluminum Alloy	Surface inclusion	Transgranular	Fine striations	Material defects
Polymer Composite	Fiber–matrix interface	Interfacial cracking	Delamination zones	Cyclic shear stress
Welded Steel	Weld toe	Mixed mode	Secondary cracks present	Residual stress + geometry

Table 2 summarizes key failure analysis observations obtained from post-fatigue examination of fractured specimens. The results reveal that crack initiation predominantly occurs at locations of stress concentration such as surface notches, inclusions, weld toes, and interfacial regions in composites. In metallic materials like carbon steel and aluminum alloys, fatigue cracks propagate mainly in a transgranular manner, producing characteristic striations and beach marks that indicate progressive crack growth under cyclic loading. These features confirm fatigue as the governing

failure mechanism rather than sudden overload. In polymer composites, failure behavior differs significantly, with crack initiation and growth occurring along fiber–matrix interfaces, leading to delamination and interfacial debonding. Welded steel specimens show complex failure behavior due to the combined effects of residual stresses, microstructural heterogeneity, and geometric discontinuities at the weld toe. The presence of secondary cracks further indicates localized stress intensification. Overall, the table highlights that fatigue failure is strongly influenced by material type, manufacturing process, and surface condition. Such failure analysis results are crucial for identifying root causes and for recommending design improvements, surface treatments, and inspection strategies to enhance fatigue resistance and structural reliability.

Conclusion

The present study on failure analysis and fatigue behavior of engineering materials under cyclic loading highlights the critical role of fatigue as a dominant mode of failure in structural and mechanical components operating under repeated stress conditions. The findings confirm that fatigue failure often initiates at stress concentrations such as surface defects, inclusions, notches, and weld discontinuities, even when applied stresses are significantly lower than the material's static strength. The progressive nature of fatigue damage—comprising crack initiation, stable crack propagation, and sudden final fracture—makes it particularly dangerous due to the absence of clear warning signs prior to failure. The study demonstrates that fatigue life is strongly influenced by material properties, microstructural features, surface condition, residual stresses, and loading parameters including stress amplitude, mean stress, and load ratio. Experimental fatigue results and failure analysis observations reveal distinct differences in fatigue response among metals, alloys, and composite materials, emphasizing the importance of material-specific design and evaluation approaches. Furthermore, the application of fatigue life prediction models such as stress–life, strain–life, and fracture mechanics–based methods provides valuable tools for estimating service life and assessing damage tolerance. Failure analysis techniques, including fractography and non-destructive testing, prove essential in identifying root causes of fatigue failures and in correlating fracture features with operating conditions. The study underscores the necessity of fatigue-aware engineering practices, incorporating proper material selection, optimized design to minimize stress concentrations, surface enhancement techniques, and regular inspection and maintenance schedules. A comprehensive understanding of fatigue behavior under cyclic loading is essential for improving structural reliability, preventing catastrophic failures,

extending service life, and ensuring the safety and economic efficiency of engineering systems across diverse industrial applications.

Reference

1. Zhao, X., Wang, X., Wu, Z., & Zhu, Z. (2016). Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. *International Journal of Fatigue*, 88, 58-67.
2. Cerfontaine, B., & Collin, F. (2018). Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives. *Rock mechanics and rock engineering*, 51(2), 391-414.
3. Sun, G. Q., & Shang, D. G. (2010). Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis. *Materials & Design*, 31(1), 126-133.
4. Song, H., Zhang, H., Fu, D., & Zhang, Q. (2016). Experimental analysis and characterization of damage evolution in rock under cyclic loading. *International Journal of Rock Mechanics and Mining Sciences*, 88, 157-164.
5. Bagheri, A., Mahtabi, M. J., & Shamsaei, N. (2018). Fatigue behavior and cyclic deformation of additive manufactured NiTi. *Journal of Materials Processing Technology*, 252, 440-453.
6. Xiao, J., Li, H., & Yang, Z. (2013). Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. *Construction and Building Materials*, 38, 681-688.
7. Wang, Z., Li, S., Qiao, L., & Zhao, J. (2013). Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. *Rock Mechanics and Rock Engineering*, 46(6), 1603-1615.
8. Belaadi, A., Bezazi, A., Bourchak, M., & Scarpa, F. (2013). Tensile static and fatigue behaviour of sisal fibres. *Materials & Design (1980-2015)*, 46, 76-83.
9. Bakkar, M. A., Saha, R., & Das, D. (2021). Low cycle fatigue performance and failure analysis of reinforcing bar. *Metals and Materials International*, 27(12), 4952-4966.
10. Fajri, A., Prabowo, A. R., Muhayat, N., Smaradhana, D. F., & Bahatmaka, A. (2021). Fatigue analysis of engineering structures: State of development and achievement. *Procedia structural integrity*, 33, 19-26.