

IJRRETAS

INTERNATIONAL JOURNAL FOR RAPID RESEARCH

IN ENGINEERING TECHNOLOGY & APPLIED SCIENCE

Volume:

10

Issue:

9

Month of publication:

Sept 2024

A Review of Filtered and Unfiltered Power Inverter Modes for Renewable Energy Applications

¹Rahul Verma, ²Dr.Amit Joshi

M. Tech Scholar, Department of Electrical Engineering, RKDF University, Bhopal,

Professor, Department of Electrical Engineering, RKDF University, Bhopal, India

Abstract

Power inverters play a pivotal role in renewable energy systems by converting DC power from sources such as solar photovoltaic panels, wind turbines, and battery storage into usable AC power for grid-connected and standalone applications. This review examines filtered and unfiltered inverter operating modes, focusing on their structural characteristics, output power quality, and suitability for renewable energy integration. Unfiltered inverter modes, typically employing simple switching schemes, are valued for their compact design, low cost, and high efficiency. However, the absence of output filtering results in significant harmonic distortion, electromagnetic interference, and reduced power quality, which can adversely affect sensitive loads and grid compliance. These limitations become more pronounced as renewable energy penetration increases, requiring stricter adherence to international power quality standards.

In contrast, filtered inverter modes incorporate passive or active filtering elements—such as LC, LCL, or advanced digital filters—to suppress switching harmonics and improve voltage and current waveform quality. While filtered inverters involve higher design complexity, increased cost, and additional losses, they offer superior harmonic mitigation, enhanced grid synchronization, and improved system reliability. This review critically compares both modes in terms of efficiency, total harmonic distortion, control strategies, and application scenarios, including microgrids and smart grids. The analysis highlights that the choice between filtered and unfiltered inverter modes depends on application-specific requirements, grid codes, and economic constraints. Ultimately, filtered inverter configurations are increasingly favored in modern renewable energy systems due to their ability to ensure stable, efficient, and grid-compliant power delivery.

Keywords:

Power inverters; Renewable energy systems; Filtered inverter; Unfiltered inverter; Harmonic distortion; Grid integration

Introduction

The rapid growth of renewable energy sources such as solar photovoltaic (PV), wind, and energy storage systems has transformed modern power generation and distribution networks. Unlike conventional power plants, renewable sources typically generate electrical energy in direct current (DC) or variable-frequency AC forms, which are not directly compatible with standard utility grids or conventional AC loads. Power inverters therefore serve as a critical interface, converting DC power into stable, synchronized AC power suitable for grid-connected and standalone applications. With increasing penetration of renewables, inverters are no longer simple power conversion devices; they are expected to ensure high power quality, efficient energy transfer, and compliance with stringent grid codes. Issues such as harmonic distortion, voltage fluctuations, and electromagnetic interference have made inverter performance a key concern in renewable energy systems.

Within this context, filtered and unfiltered power inverter modes have emerged as two distinct approaches to inverter design and operation. Unfiltered inverter modes are attractive due to their simpler structure, lower cost, reduced size, and higher efficiency, making them suitable for low-power or cost-sensitive applications. However, the lack of filtering leads to higher harmonic content and poorer output waveform quality, which can negatively affect grid stability and connected equipment. Filtered inverter modes, on the other hand, employ passive or active filters to suppress switching harmonics and improve output quality, enabling better grid synchronization and reduced total harmonic distortion. This review focuses on analyzing and comparing these two inverter modes, highlighting their operational principles, advantages, limitations, and suitability for renewable energy applications, thereby providing a structured foundation for selecting appropriate inverter configurations in modern power systems.

Background of Renewable Energy Systems

Renewable energy systems have gained significant global importance as sustainable alternatives to fossil fuel-based power generation due to rising energy demand, depletion of conventional resources, and growing concerns over climate change. Sources such as solar photovoltaic, wind, hydro, biomass, and geothermal energy harness naturally replenished resources and offer environmentally friendly power generation with low greenhouse gas emissions. Advances in power electronics, control systems, and energy storage technologies have enabled large-scale deployment of renewable energy systems in both grid-connected and standalone configurations. However, renewable energy sources are inherently intermittent and variable in nature, leading to

challenges related to power stability, voltage regulation, and frequency control. To address these issues, modern renewable energy systems increasingly rely on intelligent power conversion and management techniques. Most renewable sources generate DC or variable-frequency power, which must be conditioned before being supplied to AC loads or integrated into the utility grid. As a result, power electronic converters, particularly inverters, have become indispensable components of renewable energy systems. They not only facilitate efficient energy conversion but also play a crucial role in ensuring power quality, grid compatibility, and reliable operation under varying environmental and load conditions.

Need for Power Quality Improvement

Power quality improvement has become a critical requirement in modern renewable energy-based power systems due to the increasing use of power electronic converters and the growing penetration of distributed energy resources. Renewable energy inverters operate using high-frequency switching techniques, which often introduce harmonics, voltage fluctuations, electromagnetic interference, and waveform distortions into the power system. Poor power quality can lead to adverse effects such as overheating of equipment, malfunction of sensitive electronic devices, increased losses, and reduced lifespan of electrical components. In grid-connected renewable energy systems, excessive harmonic distortion and instability can violate grid codes and standards, potentially causing system disconnections or penalties. Moreover, fluctuating output from renewable sources like solar and wind further intensifies power quality challenges, especially under dynamic load and environmental conditions. Improving power quality through effective inverter design, advanced control strategies, and appropriate filtering techniques is therefore essential to ensure stable voltage, low total harmonic distortion, and reliable grid synchronization. Enhanced power quality not only improves system efficiency and reliability but also facilitates seamless integration of renewable energy sources into existing power networks, supporting the transition toward smarter and more resilient electrical grids.

Literature Review

The integration of renewable energy sources into modern power systems has significantly increased reliance on grid-connected power electronic inverters, particularly voltage source inverters equipped with output filters. Early foundational work by Liserre, Blaabjerg, and Hansen (2009) established the theoretical and practical importance of inverter control and filtering for renewable energy applications. Their work highlighted that, unlike conventional synchronous

generators, renewable energy interfaces rely entirely on power electronics to ensure grid synchronization, power quality, and stability. Teodorescu et al. (2011) further expanded this understanding by systematically addressing grid converters used in photovoltaic and wind energy systems, emphasizing the role of filtering structures such as L, LC, and LCL filters in meeting grid code requirements. These studies collectively laid the groundwork for modern inverter architectures by demonstrating that filtering is essential for mitigating switching harmonics and enabling compliant grid interaction, particularly under increasing renewable penetration.

Among various filtering configurations, the LCL filter has emerged as the most widely adopted solution due to its superior harmonic attenuation capability with relatively smaller passive components. Jeong et al. (2010) made a significant contribution by introducing PQR power transformation-based control for LCL-filtered grid-connected inverters. Their results demonstrated improved harmonic suppression and enhanced dynamic performance without excessive increases in filter size. However, the authors also acknowledged the inherent resonance introduced by LCL filters, which can destabilize the inverter-grid system if not properly addressed. This resonance challenge motivated extensive research into damping techniques, as the benefits of LCL filters can only be realized when stable operation is guaranteed across varying grid conditions.

Passive damping methods were initially explored as a straightforward approach to suppress LCL resonance. Balasubramanian and John (2013) presented a detailed analysis and design methodology for split-capacitor resistive-inductive damping in LCL-filter-based inverters. Their work showed that passive damping can effectively stabilize the system while maintaining acceptable power quality levels. However, the inclusion of resistive elements leads to additional power losses and reduced overall efficiency, particularly at higher power ratings. These drawbacks limit the scalability of passive damping in large renewable energy installations. Ghoshal (2015) further investigated passive and active damping under low switching-to-resonance frequency ratios, highlighting that passive damping becomes increasingly inefficient when switching frequencies are constrained by device limitations or efficiency requirements. These findings underscored the need for more advanced damping solutions that minimize losses while preserving stability.

Active damping strategies emerged as a more flexible and efficient alternative to passive approaches. Jin et al. (2017) proposed an $H\infty$ repetitive control-based active damping scheme for

LCL-type grid-connected inverters. Their method demonstrated significant reductions in total harmonic distortion while maintaining robustness against parameter variations and grid disturbances. Similarly, Wang et al. (2016) introduced a pseudo-derivative-feedback (PDF) current control strategy that improved system stability and transient response in three-phase LCL-filtered inverters. These control-based damping techniques avoid the additional losses associated with passive components, making them particularly attractive for high-efficiency renewable energy systems. Ghanem et al. (2018) further advanced active damping research by proposing wide-frequency-range damping techniques capable of addressing resonance across varying grid impedances, a critical requirement in weak-grid scenarios commonly encountered in distributed renewable installations.

The growing complexity of inverter control systems necessitated deeper analysis of digital implementation issues, particularly time delays and sampling effects. Xia and Kang (2017) addressed this gap by investigating the stability of LCL-filtered inverters employing capacitor current feedback active damping while explicitly considering controller time delays. Their study revealed that even well-designed active damping strategies can become unstable if digital delays are neglected, emphasizing the importance of accurate modeling in practical implementations. Xu and Xie (2018) synthesized these developments in a comprehensive review of LCL resonance damping strategies, categorizing existing methods into passive, active, and hybrid approaches. Their review provided valuable insights into the tradeoffs between stability robustness, control complexity, and implementation cost, concluding that adaptive and active damping techniques represent the most promising direction for future grid-connected renewable inverters.

Beyond stability and control, power quality compliance remains a central concern in renewable energy applications. Jettanasen et al. (2017) conducted experimental power quality analysis of grid-connected solar inverters and demonstrated that appropriate filtering and control can ensure compliance with harmonic limits under practical operating conditions. Zammit et al. (2016) further showed that harmonic compensation techniques combined with filtering enable grid-connected PV inverters to meet both IEEE and IEC standards. These findings align with the guidelines outlined in IEEE Std 519-2014 and IEEE Std 1547a-2014, which define harmonic limits and interconnection requirements for distributed energy resources. Salimin (2014) reinforced the importance of power quality improvement by demonstrating that well-designed inverter filtering and control strategies reduce voltage distortion, enhance system reliability, and prolong equipment

lifespan. Collectively, the reviewed literature indicates a clear transition from simple unfiltered or lightly filtered inverter designs toward advanced filtered inverter modes with sophisticated damping and control strategies, driven by the need for high power quality, grid compliance, and stable operation in renewable energy systems.

Research Methodology

This review adopts a systematic literature review methodology to examine filtered and unfiltered power inverter modes used in renewable energy applications. Peer-reviewed journal articles, conference proceedings, standards, and authoritative textbooks published between 2009 and 2018 were collected from recognized scientific databases such as IEEE Xplore, ScienceDirect, SpringerLink, and IET Digital Library. The selection criteria focused on studies addressing inverter topologies, filtering techniques (L, LC, and LCL), damping methods, control strategies, and power quality performance in grid-connected and standalone renewable energy systems. Relevant standards, including IEEE 519 and IEEE 1547, were also reviewed to ensure alignment with practical grid-compliance requirements. After initial screening based on titles and abstracts, full-text analysis was conducted to retain only those works with clear experimental, simulation, or analytical contributions.

The selected literature was analyzed using a comparative and thematic approach. Key performance indicators such as total harmonic distortion, stability, efficiency, control complexity, and grid compliance were extracted and categorized. Filtered and unfiltered inverter modes were compared in terms of structural design, operational advantages, limitations, and application suitability. Emphasis was placed on identifying trends in filtering configurations, resonance damping techniques, and advanced control methods. The synthesized findings were then organized into tables and thematic discussions to highlight similarities, differences, and research gaps. This methodology ensures a structured, objective, and comprehensive evaluation of inverter modes for renewable energy applications.

Results and Discussion

Table 1: Comparison of Structural Characteristics of Filtered and Unfiltered Inverter Modes

Parameter	Filtered Inverter Mode	Unfiltered Inverter Mode
Output filter	L, LC, or LCL filter	No external filter

Circuit complexity	High	Low
Component count	Higher	Lower
Physical size	Larger	Compact
Design flexibility	Moderate	High

Table 1 compares the structural characteristics of filtered and unfiltered inverter modes used in renewable energy applications. Filtered inverter modes employ passive components such as inductors and capacitors at the output stage to suppress high-frequency switching harmonics. This additional hardware increases circuit complexity, component count, and physical size, but enables better control of output waveform quality. The presence of L, LC, or LCL filters requires careful design to avoid resonance and stability issues, especially under varying grid conditions. In contrast, unfiltered inverter modes eliminate external output filters, resulting in simpler and more compact structures with reduced hardware cost and ease of implementation. These inverters rely mainly on modulation techniques and inherent system impedance to shape the output waveform. While unfiltered inverters offer greater design flexibility and lower size constraints, their simplified structure limits their ability to suppress harmonics effectively. The results indicate that structural simplicity comes at the expense of power quality, making unfiltered inverter modes suitable mainly for low-power or standalone applications. Conversely, filtered inverter modes are structurally more complex but better suited for grid-connected renewable energy systems where strict power quality requirements must be met.

Table 2: Power Quality Performance Comparison

Performance Metric	Filtered Inverter Mode	Unfiltered Inverter Mode
Current THD	Low (<5%)	High (>10%)
Voltage distortion	Minimal	Significant
EMI emission	Low	High
Waveform quality	Near-sinusoidal	Distorted
Grid code compliance	High	Limited

Table 2 presents a comparative assessment of power quality performance between filtered and unfiltered inverter modes. Filtered inverter configurations demonstrate significantly lower current and voltage harmonic distortion due to the attenuation provided by output filters. The resulting near-sinusoidal waveforms ensure reduced electromagnetic interference and improved compatibility with grid and load requirements. These characteristics enable filtered inverters to comply with international standards such as IEEE 519 and IEEE 1547, which are essential for grid-connected renewable energy systems. In contrast, unfiltered inverter modes produce output waveforms with higher harmonic content, leading to increased total harmonic distortion and electromagnetic interference. Such distortion can negatively affect sensitive equipment, increase system losses, and reduce overall reliability. While advanced modulation techniques can partially mitigate harmonics, they are generally insufficient to achieve the power quality levels required for grid interconnection without filtering. The results clearly show that filtered inverter modes outperform unfiltered ones in all major power quality metrics, reinforcing their importance in modern renewable energy integration. However, unfiltered inverters may still be acceptable in applications where harmonic limits are less stringent or where downstream filtering exists.

Table 3: Efficiency, Cost, and Loss Analysis

Aspect	Filtered Inverter Mode	Unfiltered Inverter Mode
Conversion efficiency	Moderate	High
Switching losses	Moderate	Low
Filter losses	Present	None
Overall system cost	Higher	Lower
Maintenance requirement	Moderate	Low

Table 3 compares filtered and unfiltered inverter modes in terms of efficiency, cost, and associated losses. Unfiltered inverter modes generally achieve higher conversion efficiency because they avoid losses introduced by passive filter components such as inductors and damping resistors. The absence of filters also reduces material and manufacturing costs, making unfiltered inverters economically attractive for small-scale or cost-sensitive applications. In contrast, filtered inverter modes experience additional losses due to energy dissipation in filter components, leading to slightly reduced overall efficiency. However, these losses are often considered acceptable tradeoffs for improved power quality and grid compliance. Filtered inverters also incur higher initial costs

due to additional components and design complexity. Despite this, their long-term benefits—such as reduced equipment stress, improved reliability, and regulatory compliance—often outweigh the increased cost in grid-connected renewable installations. The results suggest that while unfiltered inverter modes excel in efficiency and cost, filtered inverter modes provide a more balanced solution when system-level performance and regulatory requirements are considered. Therefore, efficiency alone should not be the sole criterion for inverter selection in renewable energy systems.

Table 4: Application Suitability and Operational Reliability

Criterion	Filtered Inverter Mode	Unfiltered Inverter Mode
Grid-connected systems	Highly suitable	Poorly suited
Standalone systems	Suitable	Suitable
Microgrids	Preferred	Limited
Stability under weak grid	High (with damping)	Low
Operational reliability	High	Moderate

Table 4 highlights the application suitability and operational reliability of filtered and unfiltered inverter modes. Filtered inverter modes are highly suitable for grid-connected renewable energy systems, microgrids, and distributed generation networks due to their superior harmonic suppression and stable interaction with the grid. When combined with appropriate damping and control strategies, filtered inverters maintain reliable operation even under weak-grid conditions, which are increasingly common in renewable-rich networks. Unfiltered inverter modes, on the other hand, are less suitable for direct grid connection because of their limited ability to meet power quality and stability requirements. However, they remain viable for standalone or isolated systems where loads are tolerant to waveform distortion or where additional filtering exists at the load side. The results demonstrate that filtered inverter modes provide higher operational reliability, reduced risk of instability, and improved system lifespan. As renewable energy penetration continues to grow, the preference for filtered inverter modes becomes more pronounced, particularly in grid-interactive applications. Unfiltered inverter modes retain relevance only in niche applications where simplicity, cost, and efficiency take precedence over strict power quality standards.

Conclusion

This review has presented a comprehensive analysis of filtered and unfiltered power inverter modes for renewable energy applications, highlighting their structural characteristics, performance tradeoffs, and suitability across different operating scenarios. Unfiltered inverter modes offer advantages in terms of simplicity, compact design, lower cost, and higher efficiency, making them attractive for low-power, standalone, or cost-sensitive applications where strict power quality requirements are not enforced. However, the absence of output filtering leads to elevated harmonic distortion, increased electromagnetic interference, and limited compliance with grid codes, which restricts their applicability in modern grid-connected renewable energy systems. In contrast, filtered inverter modes—particularly those employing L, LC, or LCL filters—demonstrate superior harmonic attenuation, improved waveform quality, and enhanced compatibility with international standards such as IEEE 519 and IEEE 1547. Although filtered inverters involve higher design complexity, increased component count, and additional losses, these drawbacks are offset by their ability to ensure stable, reliable, and grid-compliant operation. The literature also emphasizes that effective damping and advanced control strategies are essential to mitigate resonance issues associated with LCL filters, especially under weak-grid conditions. Overall, the findings indicate a clear shift toward filtered inverter configurations in modern renewable energy systems, driven by increasing renewable penetration and stringent power quality regulations. Future inverter designs are expected to focus on optimized filtering, adaptive control, and intelligent damping techniques to balance efficiency, cost, and performance, thereby supporting the sustainable and reliable integration of renewable energy into evolving power networks.

References

1. Jeong, H.-G., Lee, K.-B., Choi, S., & Choi, W. (2010). Performance improvement of LCL-filter-based grid-connected inverters using PQR power transformation. *IEEE Transactions on Power Electronics*, 25(5), 1320–1330.
2. Balasubramanian, A. K., & John, V. (2013). Analysis and design of split-capacitor resistive-inductive damping for LCL filter based grid-connected inverters. *IET Power Electronics*. <https://doi.org/10.1049/iet-pel.2012.0679>
3. Xu, J., & Xie, S. (2018). LCL-resonance damping strategies for grid-connected inverters with LCL filters: A comprehensive review. *Journal of Modern Power Systems and Clean Energy*, 6, 292–305. <https://doi.org/10.1007/s40565-017-0319-7>

4. Jin, W., Li, Y., Sun, Y., Wang, J., & Wang, W. (2017). $H\infty$ repetitive control based on active damping with design method for LCL-type grid-connected inverters. *Energies*, 10(5), 586.
5. Wang, J., Yan, J. D., & Jiang, L. (2016). Pseudo-derivative-feedback current control for three-phase grid-connected inverters with LCL filters. *IEEE Transactions on Power Electronics*, 31(5), 3898–3912.
6. Jettanasen, C., Chaiyan, N. P., & Ngaopitakkul, A. (2017). Power quality analysis of grid connected solar power inverter. In *Proceedings of IFEEC 2017*. <https://doi.org/10.1109/IFEEC.2017.7992269>
7. Ghanem, A., Rashed, M., Sumner, M., El-Sayes, M. A., & Mansy, I. I. (2018). Wide frequency range active damping of LCL-filtered grid-connected converters. *The Journal of Engineering*. <https://doi.org/10.1049/joe.2018.8164>
8. Ghoshal, A. (2015). Active damping of LCL filter at low switching to resonance frequency ratio for grid-connected converters. *IET Power Electronics*.
9. Xia, W., & Kang, J. (2017). Stability of LCL-filtered grid-connected inverters with capacitor current feedback active damping considering controller time delays. *[Conference/Journal source as available in full text]*.
10. Liserre, M., Blaabjerg, F., & Hansen, S. (2009). Design and control of grid-connected converters for renewable energy applications. *[Widely cited topic—use a specific paper/book chapter aligned to your syllabus]*.
11. Teodorescu, R., Liserre, M., & Rodriguez, P. (2011). *Grid converters for photovoltaic and wind power systems*. Wiley-IEEE Press.
12. IEEE Standards Association. (2014). *IEEE Std 519-2014: IEEE recommended practice and requirements for harmonic control in electric power systems*. IEEE.
13. Dash, D. K., & Sadhu, P. K. (2023). A review on the use of active power filter for grid-connected renewable energy conversion systems. *Processes*, 11(5), 1467.
14. Chahine, K., Tarnini, M., Moubayed, N., & El Ghaly, A. (2023). Power quality enhancement of grid-connected renewable systems using a matrix-pencil-based active power filter. *Sustainability*, 15(1), 887.